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This report supersedes AlAA Paper 75-51 of the same title,
which was presented at the AIAA 13th Aerospace Sciences Meeting,
heid in Pasadena, California, January 20-22, 1975, Many slips
in the original text have been corrected; clarifications on
several points, as well as new data. are added in the forms of
footnotes, additional Tigures, and Addenda.

It is believed that the power of the many existing re ax-
ation methods in fluid dynamics can be greatly multiplied with
the help of the two techniques under study. Inasmuch as the
work may not appear in journal putlication form for some time,
the distribution of this report will serve a useful purpose,
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ABSTRALT

Two problems in computational fluid dynamics are
studied in the context of transonic small-disturb-
ance theory: |. How to speed up the convergence for
currently available iterative procedures, |!. liow
a shock-fitting method may be adapted to existing
relaxation procedures with minimal alterations in
computer programming and storage requirements. The
paper contributes to a clarification of error anal-
yses for sequence transformations based on the pow-
er method (including also the nonlinear transforms
of Aitken, Shanks and Wilkinson), and to develcoing
a cyclic iterative procedure applying the transform-
ations. Examples testing the procedure for a model
Dirichlet problem and for a transonic airfoil prob-
lem show that savings in computer time by a factor
of three to five is generally possible, depending on
accuracy requirements and the particular iterative
procedure used. A shock-fitting method, valid
whether the shock is neaily normal or oblique, is
developed; its relation to, and differences from,
Murman's shock-point operator (SP0) rethod are de-
lineated. Improvement over shock-capturing and SPO
methods through shock fitting are demonstrated oy
solutions to an airfoil probiem using same mesh
sizes.

1. __INTRODUCTION

Many current methods of fluid dynamics computa-
tions make use of relaxation procedures. There are
two aspects of the computation which considerably
limit the usefulness and potentiality of these pro-
grams: One is the low rate of convergence with
respect to iterations, hence costly computer time;
the other is the loss of the sharp definition of a
shock surface in finite-difference solutions where
shocks are ''captured.' This paper will present
studies on these two aspects mainly in the context
of the (irviscid) transonic smali-disturbance theory.
Our study will focus on: |, How to speed up conver-
gence for currently available iterative procedures,
and 11. How a shock-fitting method may be adapted
to existing retaxation programs --- with minimal
alterations in computer programming and storage
requirements.

It is quite apparent that similar treatments, the
acceleration techniques in particular, can be adopt-
ed to speed up convergence of iterative solutions
to large algebraic systems arising from other prob-
lem formulations (the discretized solutions to
integral-differential equations, and the problem via
finite-element methods, as well as to certain false-
time unstecady problems); this will be explared in
separate works,

Need of Acceleration

To sce the need of acceleration techniques, we may
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take as an example the finite-ditference solution to
Dirichlet's problem in a unit square domain. The
speed and storage capacity of the modern computers
are simply not high enough for solving this problem
to an acceptable accuracy directly by Cramer's ryle
nor efficiently by the Gauss elimination method. ¥z
Established relaxation methods, such as iterative
procedures of Jacobi (J), Gauss-Seidel (GS), Succes-
sive Over-Relaxation (SOR), Line Successive Over-
Relaxation{1ineSOR)Symmetric Successive Over-Relax-
ation (SSOR), etc., prove to remain as the reliable
way to solve this and Zther elliptic problems, using
modern computers.(z'S' ) The convergence rate of
any of these iterative procedures will depend on the
magnitude of the eigen value of the largest modulus
of the iterative matrix, called spectral radius,
derioted here by | \,], The error of the solution
?5 g?e k iterations is, in most cases, gauged by
BV
The need for improvement is apparent from the fact,
to be amplified in §2.3 below, that |X,| tends to
unity as the mesh size vanishes. Thus, for an ac-
curate solution, the convergence is painfully slow.
(For certain well-ordered sparse matrices with con-
stant coefficients, the use of direct method can be
quite efficient; see Refs. 6 and 7, also 10),

The relative merits for adopting different relax-

ation procedures may be assessgd on the basis of

| -|,A'l . Lomax and Steger( ) recently discussed
possible improvement of convergence characteristics
from this viewpoint, which will depend, of course,
on certain a priori knowledge of the iterative
matrix or the spectral radius. The approach from
this viewpoint will not be fully explored here, al-
though the following study does brina out certain
important effects of the procedure changes on con-
vergence rate. Instead of altering the basic relax-
ation procedure (for each iteration), we will adopt
acyclic iterative proredure; (weakly nonlinear) se-
quence transformations closely related to those of
Shanks and Aitken are applied at the conclusion of
each cycle, generating initia! data (closer to the
convergence limit) for the next cycle.

The theoretical basis of our transformations lies
in the stipulated properties of the first few domi-
nant eigenvalues of the iterative matrix, similar
to that of the power method;(9,3,4) put special
allowance is made that moduli of successive eigen
values can be very close to each other and to unity.
This allowance, we believe, has removed the most
(unrealis*tic) serious limitation of the classical
theory of the power method as applied tc itcrative
difference solut’ ns, The error estimates, hence
the convergence s, are established for both
first-order and + acr-order transforms. The study
also clariiies an erroneous notion about the accura-
cy of Aithen's &*~ process applicd to cigen-value
problems (see § 2.2).

Thus, the first question addresses to acceicrating convergence with respect to iterations, whereas the
second, in effect, isrclated to convergence with respect to the mesh sizes, since shock fitting permits
the use of a coarser grid.
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One efficient way to reduce iterations for the
relaxation problems of interest is ''grid halving''--
starting with coarse grids, the grids arc refined
at subsequent stages of iterations. The tech-
niques, powerfully denonstrated by Jameson and South,
(|'»'2$ should be particularly helpful during the
development {debugging) stage of such programs.

The common problem of slow convergence eventually
appears, however, as grids are refined. As is well
known,(é the relative merit and limitations of the
grid-halving are a consequence of the effects of the
grid size on the spectral radius, hence, the conver-
gence rate, and can be studied as such (cf.§§ 2.3
and 5). To achieve maximum economy, the technique
can be used in combination with other methods, al-
though, for some problems related to perturbation
analyses (e.qg., Ref. 13, p. 16), application of
grid-halving may not be straightforward.

Slow Convergence in Transonic Flow Computations
p

One of the great recent advances in aerodynamics
related to relaxation methods is, perhaps, Murman
and Cole's calculation of plane transonic flow based
on small-disturbance theory using type-dependent
difference schemes, which succeeds in capturing the
shock in a super-critical flow. Subsequent
works extend the analysis to lifting airfoils, axis-
ymmetric bodies, and three-dimensional wings, and
to the full compressible potential equations {Refs.
16-19 ; see revicws Refs. 20 and 21, also 22). The
computer storage and the number of arithmetical op-
erations required by programs based on these methods
are low enough to make the computations possible
even for a modest institution. However, the comput-
er time of L00- 1,000 iterations required for the
more complicated problems may still demand } to 2
hours on an 1BM 360/4k4 or 370/!58, and 10-4Omin. on
a CDC-6600. yse of acceleration techniques with
savings of computer time by a factor of three or
four is certainly worthwhile, especially if one has
a great many problems to solve. We point out in
this cannection that, unlike those of gigichlet and
other weli-conditioned model problems( *2/, the
iterative matrix of the quasilinear, mixed-flow
problem does not lend itself to an a priori deter-
mination of its eigenvalues, The proper choice of
the relaxation parameter ''' fcr the SOR method
in this case has been mostly guess work, where room
for improvement is ample. |In this respect, we note
also that the established approach based on an opti-
mum & will not necessarily lead to the fastest
approach to the convergence limit for the SOR pro-
cedure --- even for a Dirichlet problem, as subse-
quent examinations will show (§4).

Shock Fitting tor Relaxation Solutions

Finite-difference solutions to inviscid compres-
sible fiow, with a discontinuous shock surface
satisfying the Rankine-tiugoniot relations, have
been carried out :p the past mostly as one to a?23
unsteady, or the limit of an unsteady, problem, '
78 The most successful among the works along ghis
line belong to Moretti and colleagues.(zu'zs' 6
Like Lh? timg-dependent method of Yoshihara and
Magnus, 27,28) solutions representing the steady
limit are physically sound and can be made reasonably
accurate but are gquite cosily to perform. In the
line relaxation method of Murman and Cole, the shock
is captured as a part of the continuous solution --

SoELEeT

owing largely to the numerical viscosity introduced
by the difference schemes, but is smeared out overa
few grid points.” In fact, the solutions by the line
SOR method do not satisfy the shock conservation
laws in some cases, and do not agree with [Ef re-
sult obtajned via the unsteady approach. 27,2

Murman traces the discrepancy to the error from
the shock capturing; he discovers a relatively sim-
ple technique to implement the original line SOR
method, employing a shock-point operator. However,
the SPQ solution still takes four or more gridpoints
to complete a shock jump, and the accuracy of the
method has been demonstrated cnly for cre case which
employed an exceedingly fine grid. It is pertinent,
therefore, to examine if the alternative, namely,
shock fitting, may succeed with a coarser grid. To
the best of our knowledge, works on relaxation meth-
od with shock fitting do not exist in the literature.
We will demonstrate that for the same mesh sizes,
shock fitting does represent an improvement over the
line SOR (with and withcut the SPO) in describing an
embedded shock. Some small but nosiceable differen-
ces from Murman's SPO solution remain, however,
to be resolved. (cf.8§8.3).

The first part of this paper, §§2-5, will discuss
the acceleration technique and related algorithms,
with applications to the model elliptic and
transonic equations. The second part,886-8, pre-
sents our study of shock fitting for relaxation sol-
utions to transonic flow. The kinship of our accel-
eration technjque with the Shanks nonlinear trans-
formation and Aitken's &% - onrocess is ncte-
worthy, but their subtle differences are essential;
these will be clarified in € 2. The basis of the
power method is introduced in § 2.2. To amplify the
importance for allowing close spacings between suc-
cessive eigenvalue moduli and its consequences, we
summarize in § 2.3 certain results of Youngi2) for a
Dirichlet probiem. The main theoretical content of
our method is presented in § 3 where the errors in
the power method are analyzed, and the sequence
transforms serving base to our cyclic iterative
method are derived. Numerical experiments with the
cyclis acceleration and other methods are tested for
the model Dirichlet problem in § 4 and app:ied to
the transonic flow problem in § 5. Section 6 des-
cribes our shock-fitting procedure, and § 7 discus-
ses relations to Murman's SPO method. Computation
results are studied in §8.

PART |
2. SEQUENCE TRANSFORMS AND POWER METHOD

2.1 Transformation of Sequence

Use of transformations to improve convergence
characteristics of sequences is not unfamiliar inthe
literature of fluid mechanics and applicd mathemat-

(34-37)

ics. One class of these which bears a kin-
ship to the key equations of our method is the non-
linear transformations of Daniel Shanks,! and the

related Padé rational fractions,{ From a sequence,

say, @, 4 P2y oo Doy s P v Prar 0o

the transformation gives a new sequence closer to
the limit ¢ The simplest among these is the
e, transform of Shanks
2
¢, - ‘Pu-,d%n- ¢k
ket d%~f 2¢k* dhou

(2.1)

“Since the central-difference scheme for the subcritical region does not give precisely the same viscous
coefficient,comnuted shock structure, if obtainable, wil! be qualitatively different from that in a
Navier-Stckes solution.




which predicts the limit ¢ from three successive
iterates @y Gix ., and Pust Equation (2)
has been found and applied independently in many
earlier works,and the algorithm is often referred to
as Aitken's 5’--process (see Refs. 4, 5, 30-32),
which could also be viewed as a derivative-free var-
iant of Newton's method or the meihod of false posi-
tion (see for example, Ref. 5, pp. 96-109)."

As a predictor of the limit @ for an iterative
solution to a nonlinear scalar equation ¢,= 9(¢,):

(2.1) is subject to an error comparable to the
square of €,= ¢, -¢@ under a nonvanishing 9°(¢),
and is, in fact, exact if the equatior is linear.
However, for the iterative matrix equations of in-
terest (see below), these estimates are not strictly
correct even in the linear case. The validity (and
accuracy) of £q. (2.1) and similar transforms must
be established on an entirely different basis.
Formally, the first-order transform in the present
method, Eq. (3.6 ) below, could be regarded as a
varient from that of Aitken and Shanks, Eq. (2.1);
however, a point-by-point application of Eq. (2.1)
to the iterative solution of a matrix equation
proves to be unreliable and uneconomical. (See §§3
and 5 below; neither Aitken nor Wilkinson have found
their transforms very successful wiw matrix solutians)
We note in passing that Wilkinson, following
Aitken, (3 ), applied Eq. (2.1) to approximate the
lowest-order eigenvector of a matrix, and claimed
an || €,J1% accuracy; but the proof (which overlooks
the contribution from the third eigenvectors, Ref.
&4, p. 578) is itself in error.

Considering the sequence {¢k} as the k=term
partial sum of a series of an analytic function,
Shanks identifies one of his transformed sequence

{e. (P}, to which fe ()} of Eq. (2.1) belongs,
with tlze nt row in the ,upper triangle of the Padé
Tabte, (30,38) (For Padé' fractions and further
relations to Shanks' transforms, see Refc. 39, 40,
and 41.) An important observation motivating the
work of Shanks is that the transformed sequence

{e.Cd)} represents (exactly) the limit ¢ of
a sequence {4)“} , if @ has (precisely) the
transient behavior for Successwe k

¢k = ¢ + Za‘ q'; (2.2)

where @; and q; are constants. |t is apparent
that convergence requires | 9|1 < 1 and that, for a
sequence from the partial sum of a geometric series
(a.=20,/#1), the € transform of Shanks yields
the exact limit.T The stlgulated exponential transi-
ent, Eq. (2.2), is not a general one, for there is
no apparent reason that the iterates of a general
scalar equation cannot approach its limit algebrai-
callv instead. Interestingly, for the iterative
so'ution to a matrix equation, a transient similar
to £q. (2.2) does apply to each component of the
solution near the convergence |imit §2 and 3)—
a point not fully amplified (recognized) by Shanks.
In this respect, the present and Shanks' works could
be considered to have come from the same vein.

It is instructive to explore the consequence of
the transient assumed in Eg. (2.2). The equation is
applied to k+1f1, ke2 , ..., k+n in addition
to k , the resuiting system can be used to cxpress
the limit ¢ , as well as the n values uf a,q*

interms of @\ Puey v oo @Pyen and q‘.'s,

$= Z.'C ¢.././Zc. (2.3)

(=0

where C€; is simply the co-factor of ¢k0( in the
determinant
¢ 1 1 1

¢kﬂ q" 9.1. 7" (2.3a)
¢I(u'nq'" q:n 7"” .
Since C,'s are independent of k , it can be
eliminated by applying Eq. (2.3) m times with Kk
replaced by k-1 , k-2 , , k-n . This leads

to precisely the e,. transform of { P}

2.2 Linearized System and Power Method

In the relaxation solution to the difference
equations of interest, the unknown (P and its kth
iterates M are vectors with components as many
as the number of total grid points N . The itera-
tive matrix equation of interest is

o= 9( ) (2.4)

where the function g depends on the difference
equations and the iterative procedure used. |In
approaching the convergence limit, the error vector

€= Pu-¢ (2.5)
satisfies a linearized matrix equation

ekol Q €x (2.6)
where @ is the Jacobian matrix of 9 , with a
remainder comparable to the square of (some norm of)

€y , assuming that g is well-behaved and inde-

pendent of K 1t may suffice, therefore, to
analyze the error vector on the basis of this linear
recursion relation, with a second-order accuracy.
The equations governing the limit solution 4) may,
however, be nonlinear.

We note in passing that Eq. (2.6) is equivalent
to a discrete version of a time-dependent system,

say, .
CpP=A¢ (2.7a)

for arbitrary matrices ¢ and A , and time step
a4t so long as

Q = exp.{atC A} (2.7b)

Conversely, solutions to a discretized time-depend-
ent problem may be considered near the equilibrium
limit as the iterative solution to a linear system,
Eq. (2.7). Thus, Varga 3) discusses extensively
iterative difference methods for elliptic equations,
along with forward, backward and Crank-Nicholson
schemes for parabolic equations, and interprets the
latter as Pad€ Approximants of the exponential ma-
trix, Eq. (2.7b). (Also see Lomax and Steger's re-
view, Ref. 8.) Here lics the potentiality of the
techniques under study for speeding up computations
of steady flows using a pscudo-unsteady approach.

Returning to the linear iterative system, Eq.
(2.6), the matrix Q has generally a set of eigen-
values A; with corresponding eigen vector Uy

QVez=A VvV, (=123 4, (2.8)

We assume for the moment that the A, 's are dis-
tinct and can be ordered according to their moduli

as |,\'|> Ihl > [As]> - 7|A~.J>|A~|. The error

" Aitken also studied sucressive transformations of new sequences, i.c., €T , cf. Refs. 31 ¢ 32.
Refar to Addendum A.1, p. 16.
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vector of the initial data may then be represented

by N
€, = Q-Q :Zd" v; (2.9)
=}
Repeated iterations on Eq. (2.9) with Eq. (2.6)
yields the error vector at the k™ iteration
€= 0 02234, AS. (2.10)
e

This is the maln bﬂie for the power method of Fadeev
and Fadeeva(9,1,3 Obviously, convergence requires
IA, 1< 1 and, near the limit, the error vector is

dominated by the lowest eigenvector vV, as

€= o, ¥ AK + O ALy (21D

Omitting the remainder proportional to A, ,
Eq. (2.11) can be applied to three successive iter-
ates and recovers readily the Aitken-Shanks trans-
form, Eq. (2.1). This should not be surprising,
because, for n &< N , and writing ¢, as A; ,
the '"transient' of Shanks, Eq. (2.2), for which the

€n transform gives the exact limit, is identifi-
able with the first n terms of the error vector
in Eq. (2.10). {n other words, the €, transform
applied to matrix solutions finds & theoretical ba-
sis in the power method, with an error expected to

ve proportional to K
(/\nﬂ) « 1. (2.12)

Although the approach to the limit is exponential
in k , according to Eq. (2.10), |A,| . l)\zl , etc.,
are very close to unity in most problems of interest.
This makes the convergence extremely slow; it also
makes the error estimates for the €, transform,
Eqs. (2.11) and (2.12), unr=liable (see § 3 below).
To illustrate this behavior of A;'s and their de-
pendence on the mesh size, we shall examine below a
model elliptic problem.

2.3 Eigen Values of lterative Matrix: Model Problem

Consider the finite~difference relaxation solution
to the Laplace equation in a rectangular domain with
prescribed on the boundary (a two-dimensional
Dirichiet problem). Using a uniform mesh size, the
length of two sides of the rectangie ai ‘“aken to be
I and J units, respectively, with [ 2 J. The
iterative matrix equation of N=(I-D-(J-f) un-
knowns resulting from the central-difference scheme,
using standard iterative techniques,can be written

as
b.=Qd +d (2.13)

consistent with Eq. (2.6). The sct of eigenvalues
of Q is a two-parameter family depending on the
iterative procedure used. Following Young(2), the
eigen value is denoted by AMpq for the Jacobi (J)
method, and by Apq for the Gauss-Seidel (GS)
method. It can be shown that (Ref. 2, pp. 71-73,

131)
Apq= M= —[cos P")+S/n(3—)] (2. 14a)

with p =14,2, ..., 11, and q =1,2, ...,
J=-1. For large 1 and J, the first few
(dominant) eigen values are

Nog=Fg ~ 1= '[(P/z)'+(q/;-)‘] (2. 15b)

In terms of the mesh size ax=zay=h , the two
largest eigen values for the J method are

Fisphon - 4mhE p=peat - SathY (20150)

and, for the GS method, are
AZA e =nthY, Az A 1= gkl (2.15D)

is taken as an estimate of
norm |) €x tt , the GS method would then take

! /nthtor N/mt iterations to reduce | €l by
a factor of 7' ; the corresponding iterations for
the J method is 2N/m®, |f the Shanks-Aitken
transform can be used, the error norm becoumes
PWLEPLILIF W , according to Eq. (2.12); com-
paring A, with A, and mM; with M, in Eq. (2.15), the
convergence rate is seen to increase two and a haif
times in either case. The line-relaxation version
of the GS or J method has values of (| -A 7) or
(1- twice of those in E£q. (2.14b), ‘hence
witl (.onverge twice faster, for /\'7 near unity. 2,3)

I E P\'I"___eklnl)\,l

Over-relaxation applies to J and GS methods or
their line relaxation versions, using ¢, =
P+ w (P, - &) , increase the convergence
rate in the model Dirichlet problem, provided
I <w 2. For this an! other more general matrix
equations, Young shows that an optimum @ exists
between | and 2 for the SOR method, for which the
spectral radius reaches its smallest value with (cf.
Ref. 2, p. 172, 173)

I — Al = O(nh). (2.15)

This would lead to an order of magnitude saving in
iterations; but tts possibility will not be stip-
ulated here, because the optimum w cannot be in-
ferred for the nonlinear problem (for ¢ ) of in-
terest, and also because the neighborhood of the op-
timum w for which Eq. (2.15) holds is very narrow.

Youny also observes that for 0 < w <y, the
spectral radius decreases monotonically with in-
creasing @ toward @Waept: (where there is a square-
root singularity), and that spectral radius increases
linearly as (w=-1) for wyy <« w < 2 . Excep*
when w is very close to 2, say «/ = 2 ~ OC(ht;,
these observations and £q. (2.15) indicate that the
problem of slow convergence is more serious with
the range o < w < Wopt.,

An important feature of the SOR solution to the
model Oirichlet problem is that, for Wpgy. € W < 2 ,
all eigenvalues have the same modulus, i.e., | A, |=
TXe] = .-« =|An] (CF. Ref. 2, pp. 203-206.) This
shows clearly that the applicability of acceleration
techniques based on the power method, Eqs. (2.10) -
{2.12), is limited only to

W < Wopt, (2.16)
for which the first few eigenvalues are as close
to unity as

I-A;=0Ch?) (2.17)
As noted before, for Wy ¢w < 2
acceleration may not be as critical,

the need for

3. ERRORS IN THE PQWER METHOD
AND NONL INCAR TRANSFORMAT | ONS

For large-sca.e computations involving very fine
grids (h « 1), the accuracy and convergence rate
of the Shanks @, transform summarized in § 2.2
cannot be regarded as well-based. This is because the
very fact that

A, = 1=0(h})¢o, Aa=0kY, (3.1

where ¢ =2, 3, ...,n <N , brought out in
$2.3 for the model elliptic problem, has not been

h pe i akaserr waeT o

S paa d

Py
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allowed for in classical works.“'3'5'9) This unac-
counted fact could change the error estimate for
the transforms (cf. €q. (3.3) below). In the fol-
lowing, we shall establish the transforms from «
firmer basis, taking into account Eq. (3.1), includ
ing the case with repeated A{'s

3.1 First-Order Transform

We shall first consider cases without repeated
root for the cigenvalues. For the special case
with a single dominant eigenvalue, i.e., A >

IA120A etc., the formal basis for the 52- pro-
cess deri:ved from the power method is usually taken
as €, A\ €k . The error of this equation
may be studied from the (exact) relation based on

Eq. (2.10) .
€e- M6 = ST Y AN (aa), 3D
(s2

From this, one may formally predict the limit ¢
from two iterates and A,

% A=A,
¢¢+_k_1__s 'ZszolUA( ) (3.3)

where the Iast term gives a remainder at most of
the order )\z , under Eq. (3.1). The nced for a
crltlcal analysis is seen from the appearance of
(1 - A,)as the denominator. Larger errors may thus
arise, depending on the method for estimating A, .

The simplest way of inferring A, is to deter.
mine it from three successive iterates via £q. (3.2)
for a chosen (reference) component of bk 's, say

¢: , at sufficiently large
A= Atvan, (3.4a)
with

AN (G- & )/ (Hh- 05) (3.4b)
AAE@)- 60 _ZNizd.-w’Af"(A,-A,) (A1)

A KU (_,_\_!)*-' (-Ay) (A3=A,)
X, vV, VA, (1-7,) .

By virtue of the extra factor (A,-A,)=0(h"), A}
as an estimate for A, should be reasonably accu-
rate. An equivalent estimate, which will have less
problems than )\" with rounding error and with the
sensitivity to the component chosen for reference,

' PR AL TR AL (3.5)

where 2 signifies the summation over all components
Other implimentations on the A estimates are dis-
cussed in § 3.4 later.

(3.4c)

with A, from Eq. (3.4), the limit @ may now
be predicted as

P=9 + ¢——-'/“i-)\¢:k + A (3.6a)

ith
" ad =f:,\'.'()\:/*') [“,‘_’ﬁ"'\'(“."’), b
ez MTA 1= A, ¢;?.-¢.' (3.6b)
+ d.-v")\i] =0(4A),

where Eq. (3.1) has been used. Similar estimate of
48,¢ can be cbtained if )\,' in Eq. (3.6) is
rcplaced by /\, The tronsform based on Eq. (3.6
a), with AM defined by Eq. (3.4a) or its equival~
ence, will be referred to as the first- order trans-
form. It cannot be identified with the Aitken-

Shanks transform, Fq. (2.1), except at the reference
point where A, is computed. (We will point out
the relative merit of Eq. (3.6) over the &- pro-
cess in §4,) Equations (3 6) confirm the validity
of the Aitken-Shanks or the €, transform under con-
dition Eq. (3.1) which is more relevant to the pre-
sent study. The classical derivation of Eq. (3.6)
by Lyusternik and by others appeared to be
fortuitous, since if the factor (A;-A,) were omit-
ted from the estimate of aA, , the error in

would have to be amplified by an order (j-a )= olh™®)!

3.2 Second- and Higher-Order Transforms

Since complex eigenvalues of a real matrix occur
in pairs, one must alluow for cases in which two or
more eigenvalues are equally dominant, e.g., [A|=
JAa| » even if they are distinct. The need also
arise if |A,| is too close to [A,| for the first-
order transform to be useful.

We shall look for a transform to replace Eq.(3.6),
making use of the first m  eigenvectors to filter
out the error. We ascume that all A;'s are dis-

tinct, although some of their moduli may be equal,

for which the Fadeev and Fadeeva result, Eq. (2.10),

still holds. For this purpose, we shall introduce

a polynomial in A of degree m &N , taking Pa =1,
: n

Pn()\): T_T(A -/\J'):R"P'/\"“ + B'}\" (3.7)

£l
where the second elquality defines P;'s as functins
of Aj's. The roots of B (A)=0 consist of the
whole set of eigenvalues. With this and Eq. (3.7),
the Fadeev and Fadeeva resuilt leads to equation re-
miniscent of the Cayley Hamilton theorem{l3),

Po€k +P 6ert Pi€pat - t Bubuen = 8P
with the remainder

8P =Y GATR (A, (3.8b)

el
On the basis of £q. (3.8), we may formally predict
the limit ¢ from n successive iterates of the
same component as

(3.8a)

q} <P P (9 !¢k) . 8"¢, (3.9a)

i’ﬂ- t

with j=0
& &= Zotvz\*P(A)/P(l)
il (3.90)
~ nﬁ Ml mlU( ”"i)\ )
provided all the P 's, ile. )\' 's , are known.

As in § 3.1, we may apply Eq. (3 9a) to a single
(reference) component, without the remainder but
with k replaced by k~ 1t , k-2 , ..., k-n.
The resultant equations, together wnth Eq. (3.9a)
applied to the same component, give a linear system
for estimating -'s, hence A; 's, In terms of

» P J J .

Ph-n oo Phen o+ the P _estimates are wry
accurate, because the relative error is compatable

to
Zner ﬂ'(/\nrl) 'n(l) A A Aned
d' 'U', )\' (A P( nn) O ’( )J
Now, with this high accuracy in - 's, the order

of the errors in Eq. (3.9a) due to Ythat from P, s
can be shown to be the same as 5" (P under Eq. (3.1)

The convergence limit predicted on the basis of
Eq. (3.9a), with 's estimated in the obove man-
ner or by equivalent methods (cf. § 3.4), will be
referred to as the "ntheorder transtorm, [Its error,
according to Eg. (3.9b) 15 scen under condition Eq.
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(3.1) to remain at &
[Aneel,

the same as would be anticipated from the classical
theory (cf. Eq. (2.12)). There is, of course, an
additional error of the order j¢, nt ac,,\,l“‘ , if
the original £q. (2.4) is nonlinear. At the refer-
ence point, the nth-order transform is identifiable
with the &, transform of Shanks, if the method of
estimating P;'s indicated is strictly followed.

Since the Pj 's or Aj 's are constants of the
limit, and need not be evaluated for each component
in the wanner as for the &% -process(33,4) or e2-
algorithm 5, , our nthorder transform may be
considered as being only weakly nonlinear. Eq.
(3.9a) specialized to n =2 was obtained by Wil-
kinson in Ref. 4 where its error was not analyzed.

3.3 The Case with Repeated Roots

}f two or more eigenvalues coincide, Eq. (2.10) of
the power method may not be applicable because of the
lack of a complete set of independent eigenvectors.
Suppose that the mth root of det. Q repeats itself r
times and that Q is not diagonalizable.t We may in-
troduce r new vectors VUm, Vmejseers Umep » With

(Q=Am 1) Uiy = O, j Gan
1{;'=(Q'/\n1)‘6‘u , mSjEmer
The member of the vector set ¥, , Uz ,..., Uy ,

including the new vectors, can be shown to be lin~
early independent.

We may now represent the initial error vector by

N N mer
€=2.a: U= Z‘a.u. + Yo v (3.12)
¢ .‘Z=:1' AN Z v )
‘cl JEmel
where the first sum 3 excludes those appearing in
the second. Repeated iteration on €per = QE

with €, gives
N mer
€= Yo v Ak + T (Qhatny; G013
i jemel

where the matrix Q can be eliminated from Eq. (3.13)
by making use of €q. (3.11). For the case with a
double root ( r =1), we have

kA:'"U-m (3.14)

as a basis for studying the effect on the nth_srder
transform. If m > n | the o:der of the remainder
8« ¢ would change only a little, changing from
ex . fkinihan] } to exp.fkinklai,i} |f one of ti-
dominant eigenvalues is repeated, i.e., if m&n ,
we find Eq. (3.8) remains unchanged because
Plita= 0, (3.15)
Therefore, the nth order transform holds for a re-
peated root. The proof may be extended to rge .

€ = O u;-;\,-" + o

me

3.4 Implementations

Instead of applying the first-order transform to
three successive iterates, one may apply it to

Gx-mr Ok , and P,y In this case, Eq. (3.6) Is
replaced by

¢ - ¢t
= ¢ + Lhim (3.16a)
b= - A"

(AT W) 5@ $5 )/ 91 - $10) (3-160)

with
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whkere the remainders in ¢ and A" are the sameas in
Eqs. (3.6b) and (3.4b) with A, and X; replaced
by A™and A;™, except the A. in Ak ne
terestingly, tﬂe first-order trafsform with an even
m is applicable to the case with A, ==~ A,

(even though 1A} = |A,| ), the error of tie 1 -« -
form belongs, in Ehis case, to the order )s‘,‘
Similarly, the ntMeorder transfurm may also be ., -
plied to iterates separated by m. Generally, .
order of the error in ¢ remains at A%, ung:
condition Eq. (3.1), independently of m.

A key tc the successful application of the first-
order transform is the provision of an accurate and
reliable estimate for the eigenvaive X, . One
advantage of using €q. (3.16) with m >, is, in
fact, the reduction in the sensitivity of the first-
order transform, Eq. (3.6), with respect to the er-
ror in estimating A, We observe in this regard
that not only will any error in A, be amplified by
the factor (I_)\,)“=O(h") in the *ransform, but
the computed value of A varies considerably from
component to component during the transient. In ad-
dition, there is a serious problem with rounding
error in the computation of }\,“ , since, near the
convergence limit, both the numerator and denomina-
tor of A! may not remzin large compared with rounding
errors in certain computers (iBM 360/44, 370/158,
etc.) using single-precision arithmetic — [|n this
regard, the alternative of estimating XA, by X,
from Eq. (3.5), which possesses a larger numerator
and denominator and represents an average among the

N components, gives, therefore, a better conver-
gence behavior. Another method for estimating A,
which proves to provide even better results is to
compute X, as a quotient of two inner product

N=8T &in / &7 6« (3.17)

where &, is an N -component vector ‘Sksd),, ~ P
This estimate for _A, , whose accuracy is compar-

ably to Ay and X, , is not to be confused with

the "Rayleigh quotient' §7 Qdx /876y which re-

quires Q(N®)multiplications as compared to O(N)

for X, (see, for example, Ref. 5).

Similar comments apply to the problems of esti-
mating P;'s or A.'s for the higher-order trans-
form. Estimates of ™ p, and p1  for the second-
order transform similar to ,T' can be obtained, for

example, from p, 66k + P, 8§ 6as1 + P8l Sxea = O
and similar equations.

3.5 Cyclic Acceleration Metihod tt

The first and higher crder transforms, Egs.,
(3.6a) and (3.3) can be used to improve the accuracy
of the relaxation solution at the conclusion of a
large number of iterations, as in Lyusternik's
work,(uzo ) or to convert {4% } to a new sequence
closer to the limit.

In the present work, these transforms are used
as a part of an iterative algorithm: the procedure
consists of several cycles, each of which makes k'
(10 to 30) iterations on the (nonlinear) algebraic
system; the transformation is applied at the end of
each cycle to yield an estimate of the limit, which
is used as initial data for the next cycle. , The
error (norm) is reduced by a factor of )\"‘:, at
the end of each iterative cycle (which is carried
into the coefficient o, in the next approximation),
the error after g cycles is O(A},) , where k
is the total iterations g k' (The convergence

“FI1T Q Is diagonalizable, Eq. (2.9), and hence E?S. (2.10) and (3.6a), hold even for repeated roots.

tt Recently, Young 57) and Della Torre and Kinsner

8) considered acceleration methods in which the acceler~

ation paramater 1/ y-))in Eq. (3.6a) isa constant (independent of the iterative solution) chosen a priori.
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rate of the first-order transform is therefore un-
affected by the subdivision into cycles.) Similar-
ly, the cyctic application of the n th o order
transform over a total k iterations (o times) will
have an error norm of the order )¥t|

Figure | illustrates the cyclic application of
the first-order transform for a single component.
The application of the transform at the end of the
cycle, say the k+ | iterate, requires the value
of @y (on the disc), and the stored value of
the same component from the previous iteration, ¢,
1f A, is to be determined as Al , Eq. (3.ub),
only the value of the reference component ¢:_ is
needed and carried as a single datum (for the entire
matrix). If A, is chosen to be X, , Eq. (3.5),
one can compute ¥ /S,) and store it as a single
datum along with 5 Xd is computed after the
whole field of ¢,,, has been obtained. The use
of the X, , Eq. (3.17), requires storing the whole
field of &, along with that of ¢, . When the
second-order transform is used (for predicting ¢
after the k+n iteration), full storage for the

two vectors ¢, and ¢,,, are required; additional
storage for two vectors &, _, and §, will be need-
ed if inner-product quotient forms for P, and P,

are used. The use of the latter quotient often
yields smoother approach to che limit and seems to
be worthwhile.

A 2-D }ransonic program similar to Murman and
Cole's takes up typically 100 K. for the symmet-
ric airfoil problem using 2500 grid points, and
typically 200 K.for the more genecral problem involv-
ing lift using 5000 points. Each additional storage
of the whole field of @, or §, amounts to adding
10 K.-- a relatively small addition indeed. Thus
the storage requirement for a general 2-D program
using the second-order transforms, even with the
more complicated estimates for Py and P; will
not exceed 250 K.which is well within the 300-350 K
capacity of IBM 370458 class computers, In this
regard, we point out that the iterative program for
2-D potential transonic flows of Ref. |2 requires
typically 350 K {or less,an achievement ot A, Jameson;
See Refs. 47 and 48); the teasibil ity g g
the cyclic acceiavionmetnod with the second- or
higher-order transtform Lo this and similar programs
using CDC 6600 or larger computers remain to be
studied.

We observe in passing that if Aitken's 62 -
process is strictly followed for every component, i.
e., applying the @, transform to every grid point,
not only the storage and arithmetic operations are
increased but the redundancy and nonuniforwity in A,
implicitly determined for different components may
dela, the approach to the limit. It proves
to be 1ess effective than the present procedure
{cf. §4 below) . (For application of the &%
ard similar acceleration clgorithms in aerodynamics
computations, see Refs. 44 a and b.)

Among other acceleration techniques based on a
power method with comparable simplicity is one in
which the eigen value is shifted by changing the
iterative matrix Q to (!-’)"(Q.PI ), where p
is a constant. This requires, however, a prior
knawiedge of the dominant eigen values.

An important recent work of A. Brandt(“g) on fast
numerical solutions for clliptic vquations should be
mentioned in this connection. The method, called
Muiti-Level Adaptive Technique (MLAT), recognices
;'ET. Addendum A,2 for similar results for a nine-

point difference scheme.
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the critical dependence of the converyence rate on
the mesh size and exploits the advantage of coarse
grids in two ways: (i) an adaptive discretization
according to local need, and (ii) a muiti-level it-
erative procedure in which coarser grids participate
in solving equations on the finer grids. The pro-
gramming work is intricate and complex. The cyclic
procedure under study could, nevurtheless, be applied
to speed up such a program if the need arises.

4, EXPERIMENT WITH DIRICHLET PROBLEM

As a model elliptic problem, we consider relaxa-
tion solutions to the Laplace equation with values
prescribed on a unit square boundary -- the Dirichlet
problem, For this particular problem, there are
numeious solution methods which would require much
less computer time than those to be considered.

But as a study of the cyclic iterative methods, this
problem of fers an ideal testing ground. For this
purpose, it may suffice to consider the special

problem
2 i.. = (4,1
(a—x‘ + 37‘) ¢ 0 \ )

in 0<x¢t, 0< y<!l, with ¢=1 at y=1 &d
¢ = 0 elsewhere on the boundary. With uniform
grids, five~point central-difference schemes are
used to reduce Eq. (4.1) tc a system of algebraic
equations. Line successive over-relaxation (line
SOR) is used as a basic iterative procedure, with
the vertical line (of constant x )} sweeping from
the left to the right in each iteration. To provide
a proper perspective in assessing the acceleration
technique, examinations will be made on the influence
of the relaxation parameter, reverse sweep,variable
mesh size (grid halving), and other procedure controls
of the convergence characteristics.

Effect of Relaxation Parameter

For this study, the mesh size A is taken to be 1/30.
Four values of the relaxation parameter in the range
of 1< w2 are used, inciuding @ = 1,7037 which

Ll e -~ b | ine SLOR method
in this case (cf. § 2.3). The‘z;RVE.;ence history
of the iterative solutions at a typical pcint x =
2/3, Y =1/3 are shown in fFig. 2. The results
confirm that the optimum w gives the highest con-
vergence rate. The solutions for w =1.6 and w-=
| approach the limit monotonically and the
case with w =1.9> “ﬁpt. exhibits oscillatory
behavior, consistent with properties noted in § 2.3,
The casc with w =) has the slowest approach --
a one percent accuracy is attained only after 300
iterations. Also included are results of roverse
sweep applied to the case w=1.9, and an acczler
ation procedure in which Aitken's §% - process is
folloved fer each component (at each grid point).
The reverse swc2p in the case is the 'ine version of
the SSOR; for a symmetric iterative matrix as in
the model problem under study, its application will
give real eigenvalues for the resultant matrix.

The nonoscillatory approach for w =1.,9 with the
reverse sweep shown confirm$ this observation, The
§2 -process applied cyclically to the case with

w = | does accelerate the convergence, achieving
one percent accuracy after 100 jterations. But the
process is less effective than tnat proposedawing to
Yh? r§9ug?nncy (and Inconsistency) in the A, estimate
cf, .57,

Reverse and  Horizantal Sweeps for w < @Wopt

Unlike the CASE WX Wgpe,s FeVers: sweep for
W,y reduces the convergence rate, The result
obtalned forw = 1,6 (not showni contirme that, tor
eversy swegp with vertical Tine in-
-] times,

1 accuracy.{
creases the itevations
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if, instead, a horizontal line is used in the
sween, the reverse (up and down) sweeps
worsen the convergence rate but slightly. We n.te
in this connection that the horizontal line version
of the SSOR for w = 1,6 converges even faster
than ‘ine SOR at the optimum w (achieving one per
cent accuracy at k =25, compareo with k =45 for
the line SOR at optimum w ), The gain through
using the '"*horizontal' line in this case may be
attributed to the fact that the non-zero boundary
value of p is prescribed along the horizontal
line y =1 in this particular problem, Substantial
reduction in iterations through use of horizontal
line has been found also in study with the transonic
small-disturbance flow problem where the main f'ow
and the airfoil are aligned horizontally. MHowsver,
the SOR and SSOR with horizontal lines do not appear
to be very helpful in probleins involving imbedded
supercritical flow, and will not be pursued in the
paper.

Test of Cyclic Acceleration Method:
Transform

First Qrder

As a test of the acceleration technique, we apply
the proposed cyclic method to the Dirichlet problem
for the unit square, using a mesh size of h =|/32
The convergence history for the accelerated so'ution

¢ at a typical point x =i10h , y = 22h, is
compared with the accelerated Line SOR solution in
Fig. 3(a) for a relaxation parameter w = |.4, and
in Fig. 3(b) for w =1. The accelerated line
relaxation method (ALSOR) uses the cyclic procedure
based on the first-order transform with m = 2
cf. Eqs. (3.6a) and (3.16b), implemented by the
summat ion-quotient estimate A, for A, , :f, Eq.
(3.5). The iteration begins with P =0 as initial
data for the field, the first cycle begins at k =
10, and the cycle is rep.ated every =14, The effec-
tiveness of the acceleration technique in reducing
iterations (and computing ti.e) is obvious from the
results shown. In the case of W ={| 4, the accel~
erated solution needs only 45 iterations to converge
to 1072 from the limit and 70 iterations for 10”%.
These are to be compared with 150 and 250 itera-
tions needed in an unaccelerated program with
comparable accuracy (cf. Tabulation in Fig. 3(a)).

In the cas. of w =1, for which tk -gence of
the line SOR solution is seen ear ve very
sow, the improvement by the cyc’ ‘ative method
displayed in Fig. 3(b) is even n. . onounced.

We note in passing that, in appropriate circum-
stance, this acceleraticn technique applied to a
given w < . may be competitive or even
better than mere changing to the optimum w (with-
out acceleration). This fact is supported by exper
iment (not shown) with acceleration of line SOR for

W = ).6, We point out, in passing, that even
though use of reverse sweens may decrease the con-
vergence rate, acceleration of a line SSOR program
via the first-order transform will be generaliy
successful. In fact, in our earlier study (Ref. 50,
Figs. | and 2), we find the cyclic application of
the first-order transform greatly improved the con-
vergence rate, even without constantly updating A,
with iterations.

Test of Second-Order Transform.

Grid Halving.

Figure 4 presents the convergence history of
iterative solutions for the same grid point ( X =
1I0R, y =22h) using two variants of the

Comparison with
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secord order transform (the full and the dash-dot
curves), The uniform mesh size h and the relaxa-
tion parameter w are the same as in Fig. 3(a).

The cwocfficients f; and P, of the transform, Eq.
(3.va), are estimated by a linear average method
over the entire field analogous to The full
curve is generated by the cyclic method using the
transform with m=2 (§3.4), and the dash-dot
curve with m ={,

For the Dirichlet problem in a unit square using
uniform mesh R , the line (group) version of the
J method has eigen values (Ref. 2, p. 453)

Py = cosqmh )/ [2 ~cos (prrh)]
Al - il-(Plfq1>nzhz+ O(h‘))

with P, g =1,2, ..., (K'-1). The second
and the third dominant eigenvalues differ only in
O(h%), thus, are very ciose to each other. The
line version of the SOR nethod, i.e., line SOR meth-
od, will correspondingly have closely spaced A, and
A3 (cf. Ref. 2, pp. 173-451), Therefore, the
second-order transform, whose remainder is C)@A, )
cannot be expected to render a significant improve-
ment in this case over the first-order transform
whose remainder is C)C&: ). The rasults obtaincd
here will be considered as an experiment with second
order transforn to the line SOR to be more
gainfully applied later. In spite of
the lack of a theoretical basis ftor its superiority
in the present application, the result based on the
second-order transform with m =2 turns out to
converge slightly faster than the correspoading
first-order result in Fig. 3(a).

(4.1)

Successive mesh refinement, or grid-halving,
provides great saving in computer time, not only
because halvinc the mesh size would require tour
times the iterations for the same accuracy (unless
W = Wy ), but the calculation per cycle on each
new mesh 2for a 2-D problem) will be four times as
expensive as the previous one. |n studying the
acceleration technique, it is therefore essential to
make appropriate comparison with the savings achiev-
able through grid-halving.

The curve in short dash in figure 4 presents the
convergence history for @, by the line SOR method
employing grid-halving. The computation starts with
one interior grid point where @4 is set equal to
zero. The iterative cycle correspending to each nesh
size h; is given h;' iterations before chang.ng
to the finer grid (without waiting for full conver-
gence), except for the cycle with the finest gri

h = (32)=!, for which the iteration number :s 1ot
restricted. This choice of the iteration numbers
appears to be much more efficient than what had been
practiced in published works (cf. Ref. 1, Table 1),
For k < 30, where the grid-halving has not
reached its final cycle, the curve P, vs. k for
grid-halving (without acceleration) appears to be
somewhat closer to the limit than the best of cr
accelerated line SOR solution (based on the secund-
order transform without grid-halving). But the
error in the grid-halving solution becomes larger
than the accelerated solutions :fter the former
passes into its final cycle with the finest mesh,
as Is apparent from the graph and the tahle.

Thus the required iterations for an accelerated
line SCR solution are comparable to, or eve. less
than, an unaccelerated one with grid-halving.

How-



ever, depending on the error zllowed, there can be
considerable saving by grid-halving in the computer
time on account of the great reduction in the grid
points, hence the computey work, for the coarser
grids. !'f, on the other hand, the deviation from
the (estimated) convergence limit is not to exceed
1075 (comparable to the 4 Phax set in Ref. 11),
the total computer time for accelerated solution may
then be less than that with grid halving. In any
case, th acceleration te 'nique can be expected to
reduce the computer time for the last stage of the
grid-haiving with the demonstrated efficiency.?

5. ACCELERATING THE LINE SOR
SOLUTION:  TRANSCNIC FLOW

The partial differential equation governing
steady transonic flow is nonlinear and belongs to
the mixed (elliptic-hyperbolic) type. Unlike the
mode} Dirichiet problem of §b the matrix Q govern-
ing the error vector is not a priori known; it
is not easy to idenvify, in this case, the opti-
mum relaxation parameter for the efficient use of
the SOR method. Application of cyclic acceleration
technique to speed up the line SUR method is, there-
fore, appropriate. The following will study its
effectiveness in the context of the transonic
small-disturbance theory.

5.1 The Transonic Small-Disturbance Equations:
Basic Line Relaxation Program

The steady inviscid plane flow past & thin air-
foil near sonic speed can be described by a per-
turbation velocity potentialdsatisfying a small
disturbance equation, first derived by von
karmén. (51) et (x,y) be Cartesian coordinates
with the x-axis parallel to the free stream, and Cyp
be a reference length taken below to be the half
chord. The upper and lower airfoil surface will be
represented as Yy =TCsY ( %/Cas */T,10),
where < is the thickness ratio, and oL the angle
of attack. In most computationalwork, Karman's
equations and the boundary conditio?s ?ave been
written in che form, following Cnle(52

(Kc-(1ﬂ)$i.)~;f+ a”.=0 ; {5.1a)

q~>;<7, t0) = Y'(¥,/z,0) [Xl¢ 15 (5.1b)

&z o) =0, w1 >4, (i)

5>

Or , by w0, a5 ¥rye0  (5.10)

~ ~ 1£] ~ 3
where XzX/C,, ¥ =M3v) 7/Ch . @ E(M./’Z)/’¢/UC..
¢ is the potentisl jurnp,and

K= (1-M2 Vi) (5.2)

At the trailing edge which is assumed to be sharp,
the Kutta-Joukowski condition is to be enforced.
The pressure coefficient can be cvaluated as

2 ~
Coz(P-Po) 40U = - 2(ZY ¢~
p=(P R’ 70l M) PE sy

~he relative error in this small-disturbance formu-
lation 's comparable to Cp , i.e. to z¥3. For a
supercritical flow, the elliptic and hypertolic
regions are separated by the sonic boundary

K. - ("’)Z‘} =0 , and by the shock R=X"(§)

satisfying approximate jump conditions

+ K titen $z>t:[[$d]/ﬂ6:]] :"%7 (5.4)

where[[ JJ and< > signify the jump and the ave-
rage of gquantities in question across the shock,
respectively.

Although it is not the best for studying simili-
tude, Cole's furm, Eqs. (5.1) - (5.3), will be adop-
ted below for the convenience in making comparison
with works of Murman and others.('5-]6-29) (To eli-
minate (1+1) from Eq. (5.1 a) one can simply replace
all M, by (100 Moo  in Ea. (5.1) - (5.3), except
in (1- m3)of Eq. (5.2).)

tn setting up the numerical procedure, the far-
field condition Eq. (5.1d) is replaced by one over
a rectangular boundary X = £3 , 7= *6, with

satisfying the far-field behavior consistent
with Egqs. (5.1). For a symmetric airfoil, the X-axis
can be used in place of the lower boundary y ==6.
In the cases of a high subsonic free stream
(i.e. Kc > 0 ) to be analyzed below, the $ value
over the far boundary can be described by that based
on the linearized form of (5.1a) for a vortex and
doublet of unknown strengths, to be determined in
the ‘course of the iteration. The vortex strength,
i.e.the circulation, is directly related to the
potential jump at the trailing edge; the doublet
strength depends on the airfoil thickness distribu-
tion as well as the near-field nonlinear corrections,
and can be estimated from data on the boundary
with a least-square method at the end of each itera-
tion. Unlike Krupp and Murman's procedure, the
potential jump across the x-axis behind the trailing
edge is assumed uniform and kept at the value in the
previous iteration until a new potential jump is
generated at the trailing edge.

The basic solution procedure, to which the acce-
leration and shock fitting methogs will be applied,
follows that of Murman and Cole. 5)A central-dif-
ference operator with second-order accuracy is used
in the elliptic region, and an implicit backward
difference operator with a first-order accuracy is
used in the hyperbolic region. In this basic pro-
gram, & parabolic point operator corresponding to

P75 is used at a grid point between the ellip-
tic and the hyperbolic regions. The difference equa-
tions are solved by a line relaxation method,assign-
ing appropriate w's to the two regions). The un-
known at points belonging to the same vertical line
are solved simultaneously, while the linc sweeps
downstream.

In solving che line prchlem, the matrix islinear-

jzed by assigning valuesto the coefficient of P.D.
€. (5.1a) from rhe previous sweep; the resulting
iridiagonal matrix for the line can be readily
inverted.

The basic proaram used in the subsequent studics
is written for an IBM 370/153. The grid has 81
points in X and 62 points in ¥ (or 31 points in

y if the problem has symmetry in 7 ), using
unequal but gradually varying mesh size. The finest
meshes are assigned over !X| ¢ 1 and 7 =$0.02
where 4AX =00S and a5y =004 with the mesh sizes
increasing outward.

The truncation crror in the difference equation
system is generally of the order AX and (a7)

There is, however, a re-expansion singularity re-
sulting from a mismatch of streamline and surface
curvaturcs at the shock root where the surface pres-
surc is known to vary like x'log x’ , withx'z x-%°,
uncovered by Oswatitsch and Zierep(53) (also sce

Ref. 54). This singularity causes a unit-order er-
ror in the difference equation for ¢ ncar the

chfeF_To A.2 in Addenda for a study of the second-order transform applied to a nine-point central differ-

ence procedure. 9

S




0

shock root, but the relctive errors in velocities
belong to the order ai logaX. (Hence, there is no
gain in using a second-order difference scheme

near the shock, unless the re-expansion singularity

is analytically accounted for,) With this in mind,
our solution will be no more accurate than

R = O (47 logaz, 47°) (5.5)

with 4% and 47 taken to be the smallestag and
ay. Test of convergence with respect to grid

size indicates nevertheless that the g% deoendence

may be considerably smaller than (4;1494;‘)

at points removed from the singularity.

5.2 Examples: (ircular Arc Airfoil

As a first example for transonic flows, we study
the acceleration of the line SOR solution for a
circular arc airfoil at zero incidence, for K= 18,
The problem considered has a subsonic free stream
but has an embedded supersonic region with an in-
terior shock boundary. The same solution has been
studied previously by Murman in Ref. 29 and will
be analyzed again later for shock fitting in 8.

The unaccelerated solution is generated by the
line SOR program with the smallest mesh being

AX = 005, 4y = 0.04, using over-relaxation in the
subsonic region and under-relaxation in the supersonic
regicn. Cyclic iteration procedures, using the
first-as well as the second-order transforms, are
applied. Each cycle consists of sixteen iterations
(k' =16) , with mz4 (cf. § 3.4); the first
cycle commences at k=9 for the first-order pro-
cedure and k = 17 for the second-order procedure.
The linear average quotient form X, is used for
estimating A, and the inner prcduct form is used
for estimating p, and £, (cf. §§ 3.1 and 3.4).
(Linear average forms for estimating p,’s have also
been used without major differences.)

The convergence histories of solutions by the
tiiree different procedures are illustrated in
Fig. 5(a) - 5(c) for K,=18 at Z=-0025,
y =0, for different combinations of the relaxa-
tion parameters w in the elliptic and hyperbolic
regions., In each case, the initial (trial) data
are furnished by a sufficiently accurate solution
to the same problem at K= 2.1, corresponding to
a lower free-stream Mach number, The unaccelerated
line SOR solution is shown as a solid curve; the
accelerated solution using the first-order trans-
form (referred to as ALSOR-1 ir the figures) is
shown as a thin solid curve drawn through data

from all iterations ; for the solution accelera-
ted by the second-order transform (referred to as
ALSOR-2), only data points at the end of the cycles
are shown (in circles%{

Figure 5(a) shows @3z wvs. the number of itera-
tions k for the case in which o = 1.4 in the
elliptic region and w= 0,9 in the hyperbolic
region, The improvement in the convcrgence rate
through cyclic application of the transforms is
obvious. A factor of three to four reduction in
the number of iterations is possible, depending on
whether the accuracy requirement is set at 10°¢ or
103 (cf. the table in Fig. 5(a)). We note that
104 is comparable to the_truncation error of the
difference equations; 1072 is therefore a reason-
able margin needed for confirming the convergence
of the iterative solutions. To approach the limit
with the 1077 accuracy, the unaccelerated solution
will require 350 or more iterations.

Figure 5(b) gives the results for a different

pair of relaxation parameter: w = 1.8 in the
elliptic region and w = 0.8 in the hyperbolic
region. This combination turns out to give a much
better convergence behavior. The line SOR solution
(solid curve) approaches the limit within 10-2 at
40 iterations and within 1073 at 80 iterations.
The accelerated line SOR using on the first-order
(thin solid line with print out marks% requires
even less work: 18 iterations for 107¢ and 45
iterations for 10°3 . (We note that this set of
calculations used a shorter cycle than those in
(a)and (c) of Fig. 5 with k' = & .,) The conver-
gence is so rapid in this case that use of the
second-order transform is considered unnecessary.
Most transonic flow computations to date have
employed over relaxation in the eliiptic region
and under relaxation in the hyperbolic region.
Figure 5 (c) presents a case with a uniform relax-
ation parameter, w = 0.95 for the entire field.
With this w , convergence of the 1 'ne SOR proce-
dure becomes exceedingly slow -- 40O iterations
or more would be needed to approach tine limit with-
in 1002 | The power of the cyclic trensform method
to speed up convergence is most clearly demonstra-
ted in this case, At three levels of accurecy,
10-2 , 10-3 and 10-h , the accelerated :solution
using the first - order transform apprcaches the
limit in 65, 120 and 230 iterations, respectively.
Application of the second-order transforn reduces
the iterations further to 30, 60 and 140 ‘cf.table
in Fig. 5(c))

5.3 Example with Circulation

Satisfactory ronvergence of the itecrative solu-
tions to the 2-D transonic problem invo‘Yiggléfft
is known to require 250-1200 iterations. '

We shall examine below the convergence characieris-
tics of a line SOR solution and its accelerated
version for a circular-arc airfoil at incidence,
with K= 2,29 and o/t = 0.1454, corresponding
to M,= 0.848, a 6% thickness ratioand a30 argle
of attack. The line SOR procedure uses w = 1.3
and 0.8 for the subsonic and supersonic regions,
respectively. The cyclic acceleration procedure
employs the first-order transform with m = 2,

k' = 12 iterations/cycle, and A, being estima=-
ted by the inner product form Eq. (3.17). Typical
convergence histories for the velocity perturba-
tion on the top and bottom of the airfoil surfaces
are shown in Fig. 6(a) for a point near the mid
chord, @ = - 0,025 and ¥ = + 0, The unacceler-
ated solution is given as a sol7d curve and the
accelerated solution in open circles. For the lat-
ter only data points at the conclusion of each
cycle are shown. The improvement in convergence
rate through the cyclic method is quite evident,
although not exceedingly great for this particular
point. The usefulness of the method is more clear-
ly shown in Fig. 6(b), where the convergence his-
tory for the circulation f= = v.g. 1S presen-

ted. The accelerated solution approaches the limit
within {b'? afier 150 iterations?gwhere s for tne
same accuracy the line SOR without accgleration
takes 8Q0 iterations. Oscillations in of the or-
der 1072 are ?gtgcted to persist at some gridpoints,
This may be eliminated by using a smaller’w or the
second-order transform,

The corresponding Cp distribution over the
airfoil (not shown) indicates existeace of super-
critical flow on both sides of the wing, with a

weak shock on the top. The result

is comparable to the Cp determinec from the wind
tunnel experiments of Knechtel.
Krupp and Murman,(

) As noted by
however, a successful
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correlation of computer solutions with the experi-
imental data from Ref. 55 and other sources has to
depend on a departure from Egs. (5.2) and (5.3) in
computing K, and Sg(using instead, Ke=(1-MIImg't™s

and Cpe -2t "6z ). This ambiguity ¢
{though sfight) can be settled only after adequate
studies are made on the basis of the second-crder
small-disturbance theory, and a systematic analysis
of errors in wind-tunnel experiments. We prefer to
examine this question in a separate work, which is
not r« 'evant to the present study.

As a transition to the second part of our study,
namely, shock fitting, we observe in passing that
the shock jumps deduced from the converged solu-
tions in all preceding examples, as in many sclu -
tions based on current SOR programs, do not fully
satisfy the Rankine-Hugoniot relation Eq. (5.4).
This discrepancy can be easily detected by compar-
ing the arithmetical means of the surface speed
with the normal shock value (3;) = K¢ Z¢141)
which is required at the root of the shock. In the
last example considered, the shock strength is
found to be 20% too Iow,T

PART I}
6. SHOCK FITTING APPLIED TO LINE SCR

6.1 Preliminary Remarks

Aside from the inadequacy in predicting shock
jumps, the line SOR procedure following the Murman-
Cole scheme may also give an excessively thick
transition zone for an obiique shock. This can be
illustrated by an application of the procedure to
a linear supersonic wedge flow, for which only the
backward-difference operator needs tu be used and
no iteration is required, Figure 7 presents the
profile of @z at cifferent ¥ -levels computed
with af =4% = /0™ in the region 0 & X <105
0 & 7 &1.05 above the wedge and behind the shock
discontinuity. While the exact solution gives

P = -1(7-%) , where 1(g) is a step function
ing&, the computed solution takes 10 grids at

¥ = 045, and 20 grids at ¥ =105 , to com=-
plete the transition. This mode! suggests that
solutions for sonic boomand for shock-interaction
studies by the line SOR methods should, perhaps,
be taken with caution in the supersonic range,
although the nonlinear steepening, absent from the
model, could plazz a limit on the shock thickness.
In any case, the model solution confirms the vali-
dity of the cormon practice of defining the shock
position by the point of maximum slope for - P&
orcCp noting that such a point (in circle) is
ressonably close to the exact oblique shock loca-
tion at each level, in spite of the excessively
large shock thickness. We cbserve that the SPO
(shock-point operator) of Ref. 29 does not apply
to a shock with a supersonic-supersonic transition
(cf. §7), therefore the solution using SPO in
this case may give a relatively large transition
zone compared to that in a supersonic-subsonic
transition, unless a very fine grid is used. hg
good agreement of the SPO solution with Magnus 28)
in the bow shock location may be attributed partly
perhaps to the useful aefinition of the shock
position mentioned.

The lack of a sharp definition for ihe shock
discontinuity in the line SOR soluti?n max obli=-
terate the re-expansion singularity 53,54) the
sonic-line/shock intersection, 21,54) and other
fine details of an embeddnd supersonic flow

¥ Use of finer grids does not prove to be helpful.
tif xU&;1/18e] = - %%y » then Ea. ( 6.6) jecomes

region,although descriptions of some of these
features could be improved with a very fine local
grid , at least in principle.

Whereas the jumps in thﬁ,éfo solution follow the
shock polar rather closely,'* the solution requires
3 very fine grid with a mesh size 10-3 of the wing
chord, as noted earlier. The agreement appears to
be less satisfactory in regions wherv the shock

is not nearly normal (cf. points f and g in Fig 6
of Ref. 29). 1In the following, shock fitting will
be adapted to implement the line SOR procedure of
Murman and Cole; results comparable with Murman's
can be obtained with much coarser grids.

6.2 Basic Procedure

The Shock Polar

The Rankine-Hugoniot relations in the transonic
§ma||-d|sturbance theory have been given earlier
in Eq. (5.4), and are repeated here for convenience

[3:1°
ﬂ:$i']]z , (6.1)

~ ~— - 'X.'D
[$:1/180 =-(53). (5.2)

With ¥=® g ,v=¢@y , the first equation is
L?entified with the shock polar in thc hodograph
u-V plane. The second equation signifies the
continuity of the tangential velocity component
across the shock X =XP¢y). The latter may be
replaced by the continuity of @ across the shock

[®] =o (6.3)

which~§ssures the existence of an intersection of
the ¢ surfaces belonging to two sides of the
shock. The ridge where the two surfaces meet,
therefore, locates the shock boundary. However,
the slope change at the intersection hes to satis-
fy the shock polar Eq. (6.1) or

(-K +an sy = (505 (6.4)

<'Kc+(11") $;‘->=

An essential point to observe is that each
oblique Rankine-Hugoniot shock in the physical
plane belungs to a point on the shock polar Eq.
(6.1), and that the image of a surface of dis-
continuity in the hodograph plane, which does not
conserve the tangential momentum, cannot coincide
with the shock poltar (except perhaps at their
intersections). |t follows that a solution with
shock boundary which satisfies Eq. (6.i) will also
conserve tangential velocity and potential, i.e.,
satisfying Eqs. (6.2) and (6.3) M This will be sub-
stantiated by the numerical experiment.

In comparing the computed shock jump with the
shock polar, it is convenient to climinate the
non-uniform upstream condition from Eq. (6.1). This
can be accomplished by letting K£=(Kc'("')6})-

ay= an[&] 4K
Vo= (Ve 7] }

The shock polar Eq. (6.1) may then be reduced to a
single curve (29

- -2 —
27(2+30)0 - 32% =0, (6.6)

(6.5)

2702+ 0 -2 yl=0.
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Treatment of Points Around Shock

The line-relaxation procedure o which the
shock fitting method will be applied is basically
that of Murman and Cole described in §5. The
modifications in the difference equatiors are found
mainly in the treatment of the grid point on each
horizontal line nearest to the shock on the down-
stream side, and the nearest grid point along each
vertical on the upstream side, labelled as P, S, and
Q , respectively, in Fig. 8. Three types of local
shock inclination must be distinguished in treating
point P , depending on where the shock crosses the
vertical through P (cf. Fig. 8):

(a) a point between P and the nearest grid
above P, i.e., a backward inclination;

(b) a point between P and the nearest grid
below P, i.e., a forward inclination;

(c) a pcint beyond the nearest grid.

The inclination in {c) can be either forward or
backward and includes the locally normal shock.
This classification, as well as the introduction
of points P and Q , are necessary in order to des-
cribe the shock boundary as one with a slope dis-
continuity for the ¢ surface. '

At point P , the difference equation in the
original line SOR procedure is replaced by the
difference form of the shock-polar equation Eq.
(6.1). 1a all cases, the Py s are evaluated from
the central differences at points A and B , and

&;’s from the differences at D and C , in the
manner shown in (a), (b) and (c) of Fig. 8. The
splitting of the calculation for the @ ~ jump
into two parts along different vertical lines is a
crucial feature which retains the shock as a sur-
face of discontinuity. The original difference
equation for the upstream point Q is also in need
of implem.atation in cases (a) and (b) , because
one of the five points in the backward hyperbolic
operator has been lost to the other side of the
shock, The needed datum is supplied by forward
(downstream) extrapolation to P from three upstream
points.

The Modified Line SOR Procedure

The foregoing treatment, together with the hyper-
bolic, elliptic, and parabolic difference operators
and other minor implementations applied to other
interior points, complete the difference-equation
system,

If the flow at P is subsonic, data at grids to
the left (upstream) of p are known from the most
recent sweep, and those to the right, as well as the
R.H.S. of Eq. (6.1, are taken from the previous
iteration; Eq. (6.1) then determines ¢ at P . This
results in two (linearized) tridiagonal matrix
equations for the lines above and below the shock,
which may be readily inverted for each sweep.

If the shock has a supersonic downstream, both
point P and its downstrcam point & have to be
treated (cf. Fig. 8.A). Continuity of ¢ across
the shock as well as interpolation along vertical
line are used for determining ¢ at P and the
points below. The shock cquation (6.1) is applicd
to determine ¢ at §, Tt

Relocating the Shock and Sonic Boundaries

The sonic and shock boundaries are relocated
* Refer Addendum A.3 for more gencral consideration,
tt Refer Addendum A.4 for more detailed description, )
1

before the next iteration. This step is important
for a consistent treatment of the elliptic and
hyperbolic points. For this purpose, the central
difference form of &y s computed for the region
of interest from stored ¢ data acquired from the
recent sweep. The sornic point is identified with

Kc's K.-(1#) $;: = 0, (6.7)

This will relocate the boundary "'RSHC' of Fig. 9,
separating the hypersonic and elliptic regions,
which includes the portion of the shock (‘'SR" in
Fig. 9) with a subsonic downstream. A criterion
is used to distinguish the shock from_the sonic
curve (for a shock, the decrease in @ ¥ across
the "'sonic point" is required to be no less than
5a%),

The shock position can be alternatively located
by the intersection of the ¢ -surfaces belonging
to the upstrea: and downstream side of the shock
(located in the previous interation). This should

aso locate the portion of shock{'STn Fig.9) which has
a supersonic downstream, provided numerical vis-
cosity will not smear out the gradientc of &; near
the shock. For problems invoiving embedded super-
sonic regions in general, and the example to be
studied in particular, the shock strength over the
porticon ''ST" is rather weak and its extent is very
narrow . A sub-routine to apply shock-fitting to
this vart of the flow region has not been made to
date.

Accuracy and Local Grid Refinement

The shock-iitting solution permits the use of
a grid coarser than that used in SPO and other
relaxation procedure for comparable accuracy. This
is because the several (4 or more) grid points
making up the artificial shock structure can be
eliminated. This may mean an order of magnitude,
or more, saving in the computing time. Even with
shock fitting, however, the relatively coarser grid
must still be sufficiently refined near the shock
for a clearer definition of the shock location
and an adequate description of the re-expansion
singularity. Since the finer grid is required
only around the shock,relaxation solution with the
finer grid needs to be carried out only in a
smaller (rectangular) domain enclosing the shock,
with boundary value for @ taken from the solu-
tion for the coarser grid. The local grid re-
finement in this manner may, therefore, be made
without increasing the dimension of the iterative
matrix.

7. RELATION TO SHOCK-POINT-OPERATOR METHOD

In certain subtle aspects, the shock-fitting
method presented in § 6 and the SP0 method of
Murman(29) are strikingly similar. It must be
emphasized again that the SPO method generates its
solutions by continuous calculation as in the
original Murman and Cole procedure (a shock jump
is completed in four or more grid points). As such,
it is not relevant (and unfair) to assess the SPO
right next to the ''shock point'. The following
will delineate these similarities as well as their
dif{erences, which are helpful for interpreting
the results in § 8.



7.1 The Shock-Point Operator

The elegant device of Murman in Ref.29 is
sinply to replace the parabolic operator in the
original procedure(ar a supes sonic=subsonic tran-
sition point)by one in which the original dif-
ference operator is changed to the sum of the
x-differences in an elliptic and a hyperbolic
operators. Using the lettered subscripts to denote
points show: in Fig. 10, the equation written for

PER R R
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(Px)s- it . ) -eh _ @) (% 7.1y
2 8% 2 8% ay

where, to be sure, (¥g)p is suppusedly the value

of @z in a concinuous solution at thec intermediate

(or imaginary) point between (thz tw> mid points

A and B (cf. Fig. 10). This value (¥Pz) s of

course not neaded in the computation, in which the

equation for the shoch-point P can be written as

- Ko+ (59 (@)=
- %L; @)y (5;')‘]&5;)6- (@)J' (7.2)

Formally, the shock-point operator Eg. (7.2)
could be identified with the shock polar Eq. (6.1)
in difference form, provided that the mesh ratio
a¥ /8§ can be taken as the shock slope dX%/d5 .
and that the shock point P lies on the shock. 1In
s.ch a case,

(37 ®7), = (8- 827~ 8)/a7

= [%5] . (7.3)

For a plane normal shock, the SPO will indecd agree
with the shock condition Eq. (6.1), irrespective of
the mesh ratio and the other stipulation because
the transverse velocity 6;— vanishes.

In general, Eq. (6.1)and (7.2) for P do not
agree. Thus the correct shock transition cannot
be accomplished in a single jump by the SPO itseif;
but the correct jump can be completed in 2 few
{say four or more) grid points in a relaxation
solution utili%in? the SPO algorithm, as demonstra-
ted by Murman. 29) murman is abie to show theore -
tically in Ref. 29 that difference equations based
on the hyperbolic and elliptic operators, making
use of Eq. (7.1) or (7.2) at shock points,do re-
produce correctly the correct jumps connecting
flow upstream and downstream which are many grid
points away from the plane oﬁlique shock (under the
stipulation that the plane oblique shock passes
through two grid points, i.e. 4¥%/dy =aX/Nay »
where N is an integer).

It is apparent that the way in which the shock
is captured by the procedure using SPO will be
quite similar to that by the Murman and Cole and
other methods basc ' on continuous calcnlations —

a few grid points have to be spent to arrive at the
correct jump.

Aside from the fact that it is not easy to
have A% /ay” = N d#%/4y . the other fact which
prevents the SPO from yiclding the right jump at
the shock point is that the difference in &Ty on
the R,11.S. of Eq. (7.2) is computed from data at
¢, Py, and f along the same vertical line (cf. Fig.
10 (a) and (b)). 1t is quite apparent fron the

i1lustration in Fig. 10 {b) that Fy at D will be
under-estimated by the SPO in most cases.

Had($?)n been evaluated along the ne-t ver-
tical to the left of point P, as in (a) or (b)
in Fig. 8, (and if the scale ratio could also be
properly chosen) the SPO would have becone a shock-
fitting scheme. The splitting in the I1%s]
calculation represents a fundamental difference of
the shock fitting from the SPO procedure.

7.2 SPO as an Elliptic Operator fFitted to a Shock

in problems with embedded supersonic flow, the
shocks often appear nearly normal to the free
stream with d?"/‘;‘,(s;)p,dnd(gf)c being numerically
smali. This would suggest cthat the R,H.S.'s of
both Eqs. (6.1) and (7.2) could be omitted, and
the twd eauations would then become equivalnt.
Namely,

&Ko+ (41) $z) =
SR, v (2{@2)+ (B2)s) = 0, (7.1)

implying a normal shock. This stipulation is mis-
leading, however, because over the part of the
shock Forther from the airfoil, although d%°/dy
is small (say, /4 to 1/16), both upstream and
downstream value of = K, +(1t1) &z may also be small.
A more penetrating interpretation, which relates
SPO to the shock fitting as well as the notion of
a normal shock, is to consider the SPO as an ellip-
tic operator at P fitted locally to a model shock.
This model shock, though oblique and curved, obeys
everywhere the normal shock condition

(K + Uz )= 0 (7.5)

2

This equivalence may be scen as follows.

The elliptic difference operator of the small-
disturbance equation applicd to P is

{Ke- %1[@;)2, @)} (8)- (®:)]=
+ 22 (@7)- 6], 7

where the central-difference quotients are uscd

and the letter subscript I refers to the mid point
in Fig. 10 (a) but the value (#7) 1 represents

the value @g continued analytically from behind

the shock {if point I happens to lie on the up-

stream side). To first-order accuracy in ax

this value can be computed from Eq. (7.5) as

($’; )1: 2K, - (4*')($£)A ) (7.7)

Substituting Eq. (7.7) into Eq. (7.6) we recover
precisely the SPO, Eq. (7.2).

Hence, the SPO solution should agree with the
solution generated by the shock-fitting program
described in § 6 , provided the term (di"/d}")l
or !IO;‘-"]]z is completely turncd-off from £q.(6.4)
or (6.I),as if for a normal shock., This latter
version of shock-fitting may be referred to as
tpormial-shock=fitting' (NSF) for the lack of a
better term. This equivalence may explain the
suCcess of the $PO in greatly reducing the nun-
ber of grid points for shock transition.

As an algorithm, therc is nevertheless dif-
terence between the NSF o schem: and the SP0.  For,
in $P0, the shock point P is an elliptic point and
the point carresponding to the first onve atter the
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jump is point I. In the NSF, however, the point p
(cf. Fig.8) carries the information from the Hugoniot
relation £q. (6.1), and the first elliptic point
lies farther downstream from P. |In other words,
the elliptic point in the SPO is one grid farther
upstream from that in the NSF. The first jumps
after a "shock' recorded in the SPO and NSF will
accordingly be different. (This will also de-

pend on the method with which the gradient of the
potential is deduced) Since this jump does not
satisfy the conservation law, the NSF solution, like
the SPO solution, will rely on numerical dissipa-
tive terms inherent in the difference equations to
bring about the correct transition (in a few grid
points). Interestingly, the proof given in Ref. 29
for the consistency of the SPO solution with the
conservation laws for an oblique shock over a rec-
tangle (with a base large compared to ax ) may

be readily extended to the NSF solution.

8. NUMERICAL STULY WITH SHOCK
FITTING AND SPO METHODS

8.1 Comparison of Shock Fitting with SPO Solutions

In order to bring out clearly the difference
of the solution using shock fitting from other
treatments, we shall compare solutions from computer
programs based on three methods of treating the
shock :

(i) Shock fitting (cf. § 6);
(ii)  Shock-point ooerator (cf. & 7.1);
(iii) Continuous calculation,i.e.,shock-cap-

turing (§§ 5.1 and 6.2)

The basic computer programs used in (i) and
(ii) are the same as in (iii). Program (ii) is
essentially Murman's “Fully Conservative' (FCR)
program but will be referred to here simply as the
SPO program. We point out that, because of the dif-
ferences in certain details in their basic SOR pro-
grams, a direct comparison of the shock-fitting
solution from program (i) with Murman's SPO result
of Ref. 29 may not reveal very clearly the changes
due to the different treatments of the shock. A
program based on the NSF procedure ( §7.2) was
also made in our earlier study. But its difference
from the SPO program (ii) is too slight to warrant
its inclusion in the comparison.

The preblem analyzed in detail is that of the
symmetric civcular arc airtoil at K. = 1.8 studied
previously in 5.2, which features an embedded
supersonic region terminated by a shock.t Most re-
sults to be presented below are obtzined for the
grid with 44X = 0.0125 and 4y = 0.01333 near the
airfoil which will be seen to be adequate for des-
cribing the rapid pressure variation associated
with the re-expansion singularity mentioned before.
We note that this grid is considerably coarser thn
the finest uniform grid used by Murman in Ref. 29,
which has g% = 0.002 , and a7 =~ 0.008 (corre-
sponding to ax = 0.001, and ay ¥ 0,004 ). Thus
the smallest a2 and a7 used here are 6.25 and
1.5 times the corresponding meshes used in Ref. 29.

The line SOR program using shock-fitting is
applied to this grid over a small rectangle o< ¢,
0< y<as9enciosing the shock in a manner des-
cribed in 7.1. The solutions generated from
the basic line SOR program provides the initial
data (trial solution); in the shock fitting study,
SPO solutions have also teen used as initial data

to determine the improvement gained . The number
of grid points is kept the same as in our basic

S0R program (iii) for the larger 6 » 6 rectangle,
i.e. 81 x 31 points. Iterat.\e solutions for pro-
grams (i) - (iii) all converge satisfactorily in
100 - 200 iterations (without the help of accelera-
tion techniques). The additional computer time needed
for shock fitting in the examples considered is
comparable to that for the basic program. (The num
ber of grid points used in the corresponding $pQ
calculation of Ref. 29 is about 3 times larger, but
with a rectangular domain ha!f the size of ours.
The computer work required for a converged soluticn
may presumably be 6 times longer.)

8.2  Study of Results

Comparison with Shock Polar

A critical test fc. t(he adequacy of the numeri-
cal solutions in describing the shock is to compare
them with the shock polar in the hodograph plane.
This is examined in (a) and (b) of Fig. Il for the
SPO and the shock-fitting solutions, respectively,
generated for the same grid 4,x = 0.0125,

4,5 =10.0133. The points ( J,\7) in Fig. 11
(@) designated by a given symbo! correspond to
successive grid points along a given distance from
the airfoil, i. e. a constant % (labeled in the box) ;
Eqs. (6.5) are used except that quantitius with the
"'+ superscript are replaced by the local values,
and the subscript ''2'' is omitted. The reference
value of K. is evaluated at a point upstream
where the iarge departure from the smooth solution
begins. The number labeled with the data provides
the relative grid position in the downstream direc-
tion. With one exception, SPO solutions take 4
grid points or more to reach the vicinity of the
shock polar (note the flagged symbols), as reported
in Ref. 29. However, the agreement varies from
fair to poor, indicating that the SPO, for the =esh
sizesused, is not effective in describing the in-
clined part of the shock. in Fig. 11{b), we corre-
late velocity jumps (circles) computed from &
data stored at the end of the iteration, using se-
cond-norder accurate formulae. The agreement with
the < .ock polar clearly illustrates the adequacy of
the mesh sizes employed and the improvement by the
shock-fitting over the SPO solution (using the same
mesh sizes).  Also shown are the hodograph data of
the SPO solution of Ref.29 computed vith a much
finer grid aX = 0.002; only data closest to the
polar curve are taken from Ref. 29 for comparison.

The data from the shock-fitting solution shown
correspond to the range of 0 < $¢.2 with subsonic
flow downstream. E£xtrapolation of the recorded
shock data to the point where the downstream is
sonic suggests that the sonic boundary intersects
the shock between 0,20 and 0,225 An extrapo-
lation of the shock-jump data along with SPO solu-
tiomssuggests that the shock strength vanishes be-
tween ¥ = 0.2 and 0,25 . The relative posi-=
tions of these two points appear to be consistent
with the pictureenvisioned in Fig. 9.

Surface Pressure

To indicate the type of improvement vhi~.h can
be made over the original line SOR solution in sur-
face pressure, we compare in Fig. 12 the
solutions generated from the basic program (iii),
with 8X =0.05 and 45 = 0.04 (in short dash ),
and from the SPO program (ii), with 4,X¥=0.0125
and Ay = 0.04 (in solid curve). The shock-fitting

¥ A slightly supersonic case with a bow shock has also been worked out, Cf. A.6 in Addenda.
The study also demonstratesthe simultaneous application of acceleration and shock fitting techniques.
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solutior~ with finer grid will be examined more
thorough., in the subsequent figure. The data pre-
sented are sufficient to indicate that appreciable
departure from the original SOR solution is expec-
ted to occur only in .45 <« X <0.95. Again, we ob-
serve that the pressure jump at thesurface requires
& grid points to complete. We have aiso inciuded
in this figure some data points inferred from
curves presented in Ref 29 for subsequent refer-
ence. These include Murman'‘s line SOR soiution
with 4% = 0.0k (in filled circles), Murman's two
SPO solutions with 8% = 0.04 and a¥X = 0.002

(in filled and open triangles). Their data in the
shock transition zone are not shown. The two sets
of SPO data from Murman correlate very well among
themselves, but have a maximum slightly lower than
our SPO solution.

The corresponding result from a more refined
calculation by our SPO program (ii), wusing smaller
¥ - mesh, 4,5 =0.01333,is shown in Fig. 13 as a
short-dash curve. Its difference from the result
with a coarser grid shown previously is very little.
In fact, subsequent calculation using an even
smaller »mest. ( A, X = 0.00625, a5 = 0.01333),
shows again very little difference in the surface
pressure except for a sharper definition for the
shock.

The shock fitting solution with aA,x = 0.0125,
4% =0.01333 is shown as a full curve which is
quite close to the SPO curve (in short dash). Hence
the SPO and shock fitting give essentially the same
surface speed, although the SPO with the same grid
fails to give an accurate shock jump at points
removed from the airfoil surface, as shown pre-
viously in Fig. 11.

We note, however, that the SPO result of
Murman (included as a long-dash curve) is located
farther downstream than our solution (1. chord)
with a correspondingly larger shock strength (2°)
and a lower maximum for the surface speed (i.).

Sonic/Shock Boundary

Figure 14 presents the sonic/shock boundary
from the SPO solution (in short dash) and from the
shock fitting solution (in full curve), for the
same grid with 4, ¥ = 0.0125 and 4 ¥ = 0.01333.
This sonic/shock boundary is inferred from the
local sonic condition. The part of the shock
boundary for the SPO solution has a spread over 4-
5 grid points (not shown). The shock-fitting result
appears to follow the short-dash curve of the SPO
solution, with a slight but interesting deviation
between ¥ = 0.1 and ¥ = 0.225, the last point is
near point § inferred previously to be the inter-
section of the sonic locus and the shock. There
appears to be a slight indentation, along with
changes in the curvature sign, at § = 0.2 -

0.25, suggesting an intersection invoiving 2 small
angle between “he shock ana sonic boundaries . §

Included in Fig. 14 for cosparison are the

sonic/shock boundaries bascd on the basic SOR pro=

gram (iii) using aX = 0.05 and a&y = 0.04, (in
dash-dot curve) and the result inferred from the
SPO solution given by Murman 9) using an x=acsh
equivalent to a® = 0.002 (in dash). The (dash-
dot) boundary given by the reqular shock-capturing
method, belivved to be affected 'ittic by turther
grid refinement, is somewhat smaller than our

shock-fitting and SPO solutions.

Murman's SPO sonic/shock boundary, on the other
hand,extends farther downstream than the shock-fit-
ting result, consistent with the observation made
earlier in Fig. 13. Murman's SPO shuck curve
appuars to run parallc!l to that from the shock fit-
ting below ¥ = 0.1; this agreement in shock slope
is consistent with the corresponding agreement
found in the study with the hodograph shock polar
(Fig.i1). The streamwise displacement in Murman's
sonic boundary from ours is quite appreciable, being
3/ of the wing chord at % = 0.3. The discrepancy
between our shock-fitting solution and Murman's
SPO solution will be examined more critically in
8.3. The above comparisons in Fias. 11-13 suffice
to establish that shock fitting provides an im-
provement over the shock-capturing as well as SPO
methods in locating the shock and describing flow
details in its vicinity, although little difference
is found at the airfoi' surface.

In our shock-fiiting procedure, the condition
for the continuity of the tangential velocity com-
ponent has not been explicitiy used. A sufficient
condition for fulfiiling this is that ihe two poten-
tial surfaces from upstream and downstream interscct
at the shock boundary. A point-hy-point examination
has been made along the shock. In no case have we
found the potential-surface intersection to occur
beyond the same qrid pair bracketing the velocity
discontinuity defining the shock. Fig. 15 demnon-
strates such a consistency for the level ¥ = 0.0831

8.3 Accuracy and Further Grid Refinement

The discrepancies with Murman's very refined

solution(29) brought cut above suggest readily
that a higher accuracy may be needed for shock fit-
ting than anticipated. This suygestion gains spe-
cial significance in view pf the re-expansion singu-
larity noted earlicr.(5315L) The shock=-fitting solu-
tion is therefore repeated with a finer grid, using
A% =0.00625, Ay = 0.01333. This is about 3
times the X-mesh and 1.5times the y - mesh used in
Ref. 29. Since the field away fron the shoch is
affected little by shock fitting,rectangular bound-
ary enclosing the main part of a shock smaller
than the previous solution is used, with.4¢ %< .9

0 < 5 <.59. In this way, the total number of
unknowns in the difference equations remains the
same as befcre. This result of the grid-halving
turns out to give negligible change. Noticeable
but very small differences can be found in the shock
strength and the surface speed ncar the shock (refer
to fine dots in Fig. lB),and in the shock location
near the new vertical boundary § = 0.4. The latter
deviacion could very well result (rom the inade-
quate description of the supersunic-supersonic
shock transition in the present programs,which may
cause difficulty at the boundary whicir was set tod
close to the shock. The dearce of invariance of
the solution with respect to grid retinement shown
in the solutions confirncd the accuracy of our
shock fitting solution.

Two more scurces of error may account for the
discrepancies, One may arise fren the tar-ticld
description used in the procederes, o doubiet of
an unknown strength has been used in both methods.
Nevertheless, the reotonably good agresiont with
solutions trom programs {ii) and 1) in regions

removed from the shock (¢f . Figs. 12 and 13) gives
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ample evidence that Murman's SPO solution and our
shock-fitting solution agree in the far field.

The remaining source of the discrepancies may be
traced to the convergence property of the iteration
procedures. For the shock-fitting solution,one hun-
dred twenty iterations has been uSE;LtO approach the
convergence limit with changes in @g less than
103 per 20 iterations.} **

9. CONCLUSIONS

In this paper, we have studied techniques of
accelerating the relaxation methods and treating
a shock discontinuity in the context of the tran-
sonic small-disturbarce theory.

Essential in the acceleration technique is a
transformation applied cyclically to the iterative
solutions. The transformation generates a new set
of data closer to the convergence limit for itera-
tions in the next cycle. The key formula has much
in common with the ey’ (or "en'') transform of
Shanks, (30) also Aitken's 6‘ -process, =33) put
derives its theoretical basis from the power
method. 2,

Cyclic techniques using the first-and the second-
order transforms have been tested in a model
Dirichlet problem and the transonic airfoil problem.
The results have demonstrated the effectiveness of
the technique in speeding up the convergence of the
line relaxation solutions for the elliptic as well

as quasi-linear,mixed-type problems,with different
choices of the relaxation parameters and sweep di~
rections. 1In most cases studied, reduction in the

total iteration number by a factoar of two to four
can be achieved,depending on the accuracy require-
ment and other considerations.

In certain situations, acceleration by the cyclic
transferm method proves to be as efficient as the

practice of successive grid refinement(grid halving)

and,in any case,it can be used to speed up the lat-
ter's convergence for the finest grid. The method
can be adapted easily by existing iterative programs
with minor increases in the data storage require-
ment.

Formulae similar to those of the first- and second-
order transforns have been derived by Lyusternich
and Wilkinson,!?/which brzak down however, as the
moduli of the dominant eigenvalues of the iterative
matrix approach unity. The present study has contri-
buted to a more critical error analysis for the
transforms, which ailows for a set of closely~-spaced
eigenvalue moduli to approach unity. Implicit in
the transform is the assumption of the existence of
dominant cigenvalues whose moduli are larger than
those of the rest. Situations do arise wherein this
stipulation is not met (e.g.,ifw)«)”,‘in the model
Dirichlet problem). This remains a weakness of the me-
thod,but may be remedied by readjusting the relaxa~
tion parameter,or introducing reverse sweep,in the
basic line SOR program.

Applications of the cyclic method have been limi=
ted to accelerating the line SOR solutions of Murman
and Cole for a circular-arc airfoil at small inci-
dence. The results suggest that similar improvement
in convergence properties may be expected for more
complicated 2-D and 3-D elliptic or mixed-type

FCF. Addendum A,5 for further comment on differences f

problems. This approach also has the potentiality
for speeding up certain pseudo-unsteady finite-
difference methods.

For treatments of shock disconti.uity, we have
developed a shock fitting scheme to implement the
line SOR solution to the transonic small-disturbance
theory. The scheme differs from existing works on
shuck fittings,which deal with unsteady prublems
without making use of a velucity potential. The re-
lative simplicity of the algorithm is comparable
to the shock-point operator (SP0) of Murman. The
study shows that the SPO is consistent to the first
order of a% ywith an elliptic operator, using a
derivative boundary condition (at the left) provi-
ded by the Hugoniot condition for a normal shock.
In this sense, the SPO can be interpreted as a
mode! case of shock fitting, which perhaps explains
the improvement of the SPO over the original shock-
capturing method (in terms of the number of grid
points required to complete a shock jump).

Numerical experiments with the shock fitting and
the SPO have been made for a supercritical flow
past a circular-arc airfoil at transonic parameter
Kc=1.8 and -1.83. The improvement by the sho.k
fitting over SPO (for the same grid), in satisfying
the fdugoniot condition and in defining the shock
position, is demonstrated. For solutions with com-
parable accuracy, the shock fitting should provide
an order-of-magnitude saving in computing time.
Result for K =-1.83 of shock fitting agrees well
wit? the bow-shock solution of Magnus and Yoshihara
(27), The study of acceleration in this case has
also demonstrated that acceleration and shock fit-
ting can be applied simultanecusly with expected
gains in efficiency and accuracy.
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ADDENDA

A.l Relations to Geometric Series and Remarks on
Anti-Limit (p. 3)

More generally, the € {®} yields the exact
limit, if @ can be represented by the k«term
partial sums of n geometric series.

In this work we have not explored the potentiality

of Shanks' transformation to convert a divergent
rom Murman's (Ref. 29) results,

"o, Addendum A.6 for the study of the slightly supefsonic ( K. <0) case and of acceleration of line SOR
with shock fitting.
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procedure to a converjent one, corresponding to

Shanks' notion of an "anti-limit.'* This fact may be
quite useful; for example, if IA,| M1 but A 1< 1
i=2,3, ..., N, Eq. (3.6a) still holds.

A.2 Accelerating Line SOR Based on a 9-Point

Difference Scheme (p. /)

Numerical experiments with our acceleration tech-
nique have been made on line SOR method using a 9-
point difference scheme (cf. Fig. 4.A). In this
case, D. Young's theorem for optimum relaxation
parameter does not hold, although Garabedian has
estimated the opt.mum w for point-iterative pr?-
cedures by studying an associated hyperbolic PDE 56),
The optimum-relaxation parameter is not known for

the line SOR procedure considered here. In Fig.h.A
a typical convergence history of the unaccelerated
results, using a4x = 1/30, is shown as a solid

curve. The accelerated result based on a second-
order transform is shown in short dash with circle,
which approaches the limit within one percent in 30
iterations, as compared to 3 or 4 hundred for the
unaccelerated one.

A.3 Types of Shock Inclinaticns Involving Subsonic
Downstream (p. 12)

More generally, one must allow for possible situ-
ations wherein a shock intersects the vertical at
an x-station further downstream than that through P
(cf. Fig. 8). The limitation to the three types of
inclinations shown in Fig. 8 does not seriously
affect the examples computed in our study, inciuding
the case with a slightly supersonic free stream.
when the situations mentioned do occur, the grid
point for the elliptic operator above (or below)
point § would be lost (io_the other side of the
shock); but the missing ¢ data can be furnished by
involking continuity of @ across the shock and in-
terpolation (or extrapolation) along the vertical
through point. S.

A.L4 Shock Fitting in the (ase of a Supersonic-
Suparsonic Transition (p. 12)

|f the shock has a supersonic downstream, both
point P and its downstream point S have to be

treated. The following will discuss the treatment
in a line SOR procedure. When the flow region ana-
lysed is completely gownstream of the "limiting

characteristics,' the problem may be treated either
by the characteristic method or by a difference pro-
cedure, using the vertical line sweeping the fieid
only once.

Consider first the treatment in a line-relaxation
procedure. If points directly below i are reguiar
points where the hyperbolic operator is applicable,
such as in sketch (a) of Fig. 8.A, é; at P and the
unknown @ 's at hyperbolic points below P capn be
determined in each iteration in terns of the ¢ value
at the intersection of shock and the vertical through
P, using interpolation and involking continuity of

6’ across the shock. The first shock equation, Eq.
(6.1), will then be used to determine at point S,
The algebraic system for the hyperbolic points di-
rectly below point § may then be solved. if the
shock in sketch (a) were to intersect the next hori-
zontal line between P' and S§', the trcatment of
point P or P' should then be applied to point §'.
The missing information at P' (which is now upstream
of the shock) in this case will be supplied by the
continuity of § at the shock via extrapolation,
Siwilar treatment can be applied to shocks with

smaller shock angles. Suppose that the slope of the
supersonic-supersonic shock d¥° /dy’ turns out to be
large enough (relative to af/ay ) so that point
"ptoccurs directly above the point ''S'' which belongs
to the next lower horizontal, such as the "P'""in
sketch (b) of Fig. 8.A. In this case, at P' can
be determined directly by interpolation between the
shock and the point S below. With a still larger
shock angle, there may be two or more grid points
between the shock and S along the vertical in sketch
(b} of Fig. 8.A. In this case, more extrapolation
work along the vertical for § (and §z ) will be
needed. Cleariy, the determination of the type of
shock inclination depends on the relative magnitudes
of dR°/dy und 8X /a5 .

|f the flow field analysed is thoroughly super-
sonic downstream of a certain X = %s , for all y ,
a one-sweep procedure marching forward in X can be
used. In this case, the algorithm to treat a super-
sonic-supersonic transition remains basicaily the
same as in the line SOR procedure described in the
last paragraph, except that it takes only a single
sweep, and that the shock incliration has to be de-
termined from €q. (6.2) for the next vertical line
after completing the computation for each line; an
inner {iterative) loop is, however, needed in apply-
ing Eq. (6.1) as a cubic equation for g¢gd » e,
for § at point S.

A.5 Further Comments on Differences from Murman's
SPO Solution for K, = 1.8 (p.16)

The small difference from Murman's SP0 solution
for K, = 1.8 (Ref. 29) noted above (17 chord in
shock location, 2% in shock strength, and 3% chord
in the sonic-boundary displacement) is believed to
result from a smaller rectangular domain (in grid
refinement) used in Ref. 29.

A.6 Shock Fitting in a Slightiy Supersonic (K¢ <QO)
Case:Acceleration of Line SOR with Shock Fitting
(pp. TG, 18)

in as much as the limited difference between the
present solution and Murman's SPO result of Ref. 29
cannot be completely rescived with certainty, we
should compare our result with the corresponding
solution b 2§?e time-dependent method of Magnus and

Yoshihara, which is available, however, only for
the case of a circular-arc airfoil in a slight sup-
ersonic free stream ( K, = -1.829).

For this purpose, a line OSR procedure with shock
fitting is applied to the case just mentioned, using
a uniform grid 4% = 0.05 and ay = 0.10. Shock
fitting for the bow shock in this case is relatively
simple in that $=o everywhere upstream of the
shock, which also climinates the need for a far-
field description. With 6:0 everywhere as an in-
put (trial solution), the bow shock of Magnus and
Yoshihara(27) is recovered (to 1/ accuracy) in 240
iterations. The results for the bow shock and the
sonic boundary are shown in Fig. 16. The subsonic
flow region in this case is unaffected by the pre-
sence of the portion of shock beyond the sonic down-
stream point. The shock/sonic boundary can there-
fore be determined from shock fitting which treats
strictly a supersnnic-subsonic transition. A single~
sweep procedure treating supersonic=supersonic transi-
tion (cf.Addendum A.4) has atso been used to continue
the solution beyond the sonic boundary, yielding re-
sults in agreement with thosc of Ref. 27, Since the
bow shock captured by Murman's SPO solution (Ref.29)
compared also quite well with Magnus and Yoshihara's
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(27,
ods do agree in this case.
method yields far superior resolution in shock loca-
tion and in the pressure signature, and is therefore
much suited for sonic-boom and caustic studies.

One obvious questions remains.

one sees that the SP0 and shock fitting meth-
But the shock-fitting

Namely, can the

line SOR procedure with shock fitting be acceierated?

The answer is an affirmative one.

We have applied

3 second-order cyclic acceleration technique to the
above mentioned procedure, and succeeded in recover-
ing the bow shock of Fig. 16 (to within 1) in 64
iterations.

-~

. Martin, E.D. and Lomax, H.
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Cyclic acceleration technique applied to

an iterative solution, illustrated for the first-
order transform, The cycle is repeated every
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Fig. 7 [Illustration of shock transition profiles
in a linear supersonic flow, using hyperbolic
differance operator.
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Fig. 8 Grid-point arrangements and shoch in-
clinations in shock-fitting method,
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Fig. 8.A Grid point arrangements vor shock
fitting in cases of supersonic-supersoni
transitions.
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Fia.

9 [llustration of shock/sonic boundary
delimiting the embedded supersonic region.
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airfoil at

Ke = 1.8 for 4 X = 0,0125,

A ¥ = 0,0133: Comparison of programs (ii),
programs (iii), the non-conservative and fully
conservative programs of Murman (A1AA 1974),
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fitting,

included.
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Comparing SPO and <hock-
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Fig. 16 Comparison of shock-fitting and
pseudo-unsteady methods for the shock/
soric boundary over a circular-arc air-
foil at K. =-1.829, witih uniform mesh

_ aXx = 0.05, 87= 0.10. Note that the ac-
seleralzd shock fitting yields results

- indistinguishable from the unaccelerated
one in 64 iterations.
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